Services
- Development of Marine Resources
- Development of Marine Algae Resources
- Seaweed Extraction
- Seaweed (Macroalgae) Analysis
- Algae (Microalgae) Analysis
- Algae Identification
- Algae Production
- Algae Culture
- Algae Harvesting and Separation
- Algal Biodiversity Assessment
- Purification of Algal Extracts
- Algae Database Construction
- Microalgal Fermentation
- Haematococcus Pluvialis Production
- Nannochloropsis Production
- Phaeodactylum Tricornutum Production
- Chlorella Vulgaris Production
- Spirulina Production
- Porphyridium Cruentum Production
- Development of Seaweed Enzyme Products
- Diatom Production
- Agar Production
- Carrageenan Production
- Development of Marine Biofertilizer
- Seaweed Fertilizer Production
- Marine Bio-Calcium Fertilizer Production
- Marine Fish Protein Liquid Bio-fertilizer Production
- Organic Kelp Fertilizer Production
- Seagrass Organic Compost Production
- Microalgal Fertilizer Production
- Jellyfish Fertilizer Production
- Marine Microbial Fertilizer Production
- Chitosan Fertilizer Production
- Oligochitosan Fertilizer Production
- Chitin Fertilizer Production
- Composition Analysis of Marine Biofertilizer
- Quality Testing of Marine Biofertilizer
- Screening of Microbes for Marine Biofertilizer
- Development of Alginate
- Development of New Marine Proteins
- Marine Halophilic Enzyme Production
- Marine Microbial Lysozyme Production
- Marine Agarase Production
- Marine Cold-active Enzymes Production
- Marine Carrageenase Production
- Marine Xylanase Production
- Marine Chitinase Production
- Marine Collagenases Production
- Porifera Peptides Synthesis
- Cnidaria Peptide Synthesis
- Mollusca Peptide Synthesis
- Annelida Peptide Synthesis
- Arthropoda Peptide Synthesis
- Echinodermata Peptide Synthesis
- Chordata Peptide Synthesis
- Development of Marine Biotoxin
- Isolation of Marine Peptide Toxins
- Purification and Characterization of Marine Peptide Toxins
- Isolation of Marine Polyether Toxins
- Isolation of Marine Alkaloid Toxins
- Identification and Quantification of Marine Polyether Toxins
- Detection of Marine Biotoxin
- Immunoassay Testing of Marine Polyether Toxins
- Biological Activity Evaluation of Marine Biotoxin
- Biosynthesis of Marine Biotoxin
- Risk Assessment of Marine Biotoxin
- Identification of Microcystins
- Isolation and Purification of Microcystins
- Molecular Characterization and Toxin Quantification of Microcystis
- Development of Marine Biosurfactants
- Marine Microbial Production of Lipopeptide Biosurfactant
- Marine Microbial Production of Rhamnolipid Biosurfactant
- Marine Microbial Production of Sophorolipid Biosurfactant
- Marine Microbial Production of Trehalose Lipid Biosurfactant
- Marine Microbial Production of Fatty Acid Biosurfactant
- Marine Microbial Production of Lipopolysaccharide Biosurfactant
- Marine Microbial Production of Lipoprotein Biosurfactant
- Marine Microbial Production of Lipoamino Acid Biosurfactant
- Purification of Marine Biosurfactant
- Isolation of Biosurfactant Producing Marine Bacteria
- Process Design and Optimization for Marine Biosurfactant Production
- Critical Micelle Concentration Determination of Marine Biosurfactant
- Structural Diversity Analysis of Marine Biosurfactant
- Characterization of Marine Biosurfactant
- Quantification of Marine Biosurfactant
- Qualitative Analysis of Marine Biosurfactant
- Surface Tension Measurement of Marine Biosurfactant
- Antimicrobial Testing of Marine Biosurfactant
- Anti-adhesive Testing of Marine Biosurfactant
- Development of Marine Unsaturated Fatty Acid
- Bioactivity Assays of Marine Unsaturated Fatty Acid
- Chemical Structures Analysis of Marine Unsaturated Fatty Acid
- Marine Polyunsaturated Fatty Acid Biosynthesis from Yarrowia Lipolytica
- Fermentation of Marine Microalgae to Produce EPA/DHA
- Screening of Marine Yeasts to Produce Unsaturated Fatty Acids
- Unsaturated Fatty Acids Biosynthesis from Thraustochytrium
- Unsaturated Fatty Acids Biosynthesis from Schizochytrium
- Development of Marine Biochips
- Development of Marine-Based Biomaterial
- Development of Marine Polysaccharides
- Development of Brown Seaweed Polysaccharides
- Development of Red Seaweed Polysaccharides
- Development of Green Seaweed Polysaccharides
- Structural Analysis of Marine Polysaccharides
- Modification of Marine Polysaccharides
- Physicochemical Properties Analysis of Marine Polysaccharides
- Separation and Purification of Marine Polysaccharides
- Development of Marine Oligosaccharides
- Development of Marine Microbial Polysaccharides
- Development of Marine Microbial Pesticide
- Development of Marine Algae Resources
- Analysis of Marine Organisms
- Analysis of Marine Microorganisms
- Identification and Detection of Marine Microorganisms
- Isolation and Cultivation of Marine Microorganisms
- Characterization of Marine Microorganisms
- Identification of Marine Bacteria
- Physiological Characteristic Analysis of Marine Microorganisms
- Identification of Marine Virus
- Marine Microbial Community Profiling
- Identification of Marine Archaea
- Quantitative Analysis of Marine Microbiome Community
- Identification of Marine Yeast
- Sequencing of Marine Microbial Community
- Identification of Marine Eukaryotic Microorganisms
- Fermentation of Marine Microorganisms
- Marine Microbial Limits Testing
- Analysis of Marine Microbial Diversity
- Databases Construction of the Marine Metagenomics
- Marine Microbial Bioburden Testing
- Marine Microbial Stability Testing
- Marine Microbial Viability Testing
- Sampling of Marine Microorganism
- Preservation Service of Marine Microorganism
- Breeding of Marine Microorganisms
- Analysis of Marine Plankton
- Analysis of Marine Plants
- Chlorophyll Detection of Algae
- Detection of Phycocyanin Concentration
- Growth Inhibition Test of Freshwater Algae
- Sediment-free Myriophyllum Spicatum Toxicity Test
- Water-sediment Myriophyllum Spicatum Toxicity Test
- Water-sediment Glyceria Maxima Toxicity Test
- Efficacy Test of Algicides
- Analysis of Phytoplankton Pigment
- Identification and Sampling of Zooplankton
- Ultra-microplankton Detection
- Microplankton Detection
- Determination of Trace Elements in Plankton
- Macrobenthos Analysis
- Plankton Image Analysis
- Plankton Sorting
- Analysis of Marine Microorganisms
- Development of Marine Drug
- Development of Marine Antibacterial Drug
- Development of Marine Anticancer Drug
- Development of Marine Anti-inflammatory Drug
- Development of Marine Antioxidant
- Development of Marine Antiviral Drug
- Development of Marine Neuroprotective Drug
- Development of Marine Antiparasitic Drug
- Development of Marine Analgesic Drug
- Development of Marine Cardiovascular Drug
- Development of Marine Antimicrobial Drug
- Development of Marine Antimalarial Drug
- Development of Marine Anticoagulant Drug
- Development of Marine Antihyperlipidemic Drug
- Development of Marine Antidiabetic Drug
- Development of Anti-tubercular Drug
- Development of Marine Antiprotozoal Drug
- Marine Organism Cell Culture
- Development of Marine Organism Model
- Marine Biological Test
- Fish Embryo Acute Test
- Fish Early Life Stage Toxicity Test
- Fish Sexual Development Test
- Fish Juvenile Growth Study
- Fish Egg Test
- Fish Short Term Reproduction Assay
- Amphibian Metamorphosis Assay
- Lemna Growth Inhibition Test
- Fish Acute Toxicity Test
- Fish Chronic Toxicity Test
- Endocrine Disruption Testing
- Daphnia Magna Reproduction Test
- Daphnia sp., Acute Immobilisation Test
- Potamopyrgus Antipodarum Reproduction Test
- Lymnaea Stagnalis Reproduction Test
- Fish Life Cycle Toxicity Test
Looking for something specific?
Search within Our Comprehensive Services
Development of Marine Cardiovascular Drug
Cardiovascular disease (CVD) is one of the diseases with the greatest impact globally. Recently, bioactive compounds from natural sources such as plants, microorganisms, and marine organisms have attracted widespread interest. Marine sources are a repository of novel bioactive metabolites with various pharmacological activities. Marine species are the newest source of bioactive natural compounds compared to terrestrial plants and non-marine microbes. Marine-derived compounds such as omega-3 ethyl esters, xylketal B, asperlin, and sarinsterol have shown promising results in a variety of CVDs. The importance of marine natural products (MNPs) in drug discovery, especially their role in the creation of existing medicines, is well documented. Natural chemicals have excellent biocompatibility compared to manufactured pharmaceuticals without compromising the diversity of these molecules and their effects. Marine pharmaceuticals are more popular than other products due to their low toxicity, chemical diversity, cost-effectiveness, and proven therapeutic promise.
Fig 1. Possible mechanism of different marine-derived compounds in CVDs. (Akram W, et al., 2023)
Our Services
Through our integrated platform of specialty and medicinal chemistry services, we provide end-to-end solutions for cardiovascular drug development, supporting the isolation, purification, identification and optimization of lead compounds to accelerate the selection of preclinical drug candidates.
- Extraction and Purification of Marine Cardiovascular Drugs
Marine organism including sponges, tunicates, fish, soft corals, nudibranchs, nudibranchs, hindbranchs, molluscs, echinoderms, bryozoans, shrimps, shells, sea slugs and marine microbes are our biologically active sources of compounds. - Impurity Isolation and Structure Elucidation of Marine Cardiovascular Drugs
We isolate and identify impurities/degradants of active compounds by analytical supercritical fluid chromatography-mass spectrometry (SFC-MS) and analytical liquid chromatography-mass spectrometry LC-MS. - Pharmaceutical Analysis and Quality Control of Marine Cardiovascular Drugs
- Method development and validation
- Characterization of reference materials
- Stability testing, routine sample analysis
Our Purification Capabilities
Our dedicated purification team provides chiral and achiral purification services using preparative supercritical fluid chromatography (Prep-SFC) and preparative high-performance liquid chromatography (prep-HPLC).
- Separation of impurities in starting materials, active compounds and drug products
- Isolation of degradation products of active compounds from forced degradation studies
- Chiral separation method development
- High-throughput purification of isolation compounds
Results and Reports
- Structural determination data
- Custom analysis report
- Experimental procedure
- MS raw data files and MS data quality checks
CD BioSciences is a professional service provider for the marine biology industry. Our marine cardiovascular drug development services can ensure that the most suitable methods and techniques are selected for your project. We provide our customers with the most precise ingredient data and highly informed process expertise. Our team of biomass experts plays a key role in the formulation, optimization and commercial evaluation of biomass value-added processes in industry and academia. If necessary, please feel free to contact us.
Reference
- Akram W, Rihan M, Ahmed S, et al. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry[J]. Marine Drugs, 2023, 21(3): 193.
Please kindly note that our services can only be used to support research purposes (Not for clinical use).